CJ: Mã doanh nghiệp
M: Bộ ngắt mạch vỏ đúc
1:Thiết kế số
□:Dòng điện định mức của khung
□: Mã đặc tính khả năng phá vỡ/S biểu thị loại tiêu chuẩn (có thể bỏ qua chữ S) H biểu thị loại cao hơn
Lưu ý: Có bốn loại cực trung tính (cực N) cho sản phẩm bốn pha. Cực trung tính loại A không được trang bị bộ phận ngắt quá dòng, nó luôn được bật và không được bật hoặc tắt cùng với ba cực còn lại.
Cực trung tính của loại B không được trang bị bộ phận ngắt quá dòng và được bật hoặc tắt cùng với ba cực còn lại (cực trung tính được bật trước khi tắt). Cực trung tính của loại C được trang bị bộ phận ngắt quá dòng và được bật hoặc tắt cùng với ba cực còn lại (cực trung tính được bật trước khi tắt). Cực trung tính của loại D được trang bị bộ phận ngắt quá dòng, luôn luôn được bật và không được bật hoặc tắt cùng với ba cực còn lại.
| Tên phụ kiện | Phát hành điện tử | Giải phóng hợp chất | ||||||
| Tiếp điểm phụ, bộ ngắt điện áp thấp, tiếp điểm báo động | 287 | 378 | ||||||
| Hai bộ tiếp điểm phụ, tiếp điểm báo động | 268 | 368 | ||||||
| Công tắc ngắt mạch, tiếp điểm báo động, tiếp điểm phụ | 238 | 348 | ||||||
| Bộ ngắt điện áp thấp, tiếp điểm báo động | 248 | 338 | ||||||
| Tiếp điểm phụ, tiếp điểm báo động | 228 | 328 | ||||||
| Tiếp điểm báo động nhả shunt | 218 | 318 | ||||||
| Cơ cấu giải phóng điện áp thấp của tiếp điểm phụ | 270 | 370 | ||||||
| Hai bộ tiếp điểm phụ | 260 | 360 | ||||||
| giải phóng shunt giải phóng điện áp thấp | 250 | 350 | ||||||
| Tiếp điểm phụ nhả shunt | 240 | 340 | ||||||
| Giải phóng điện áp thấp | 230 | 330 | ||||||
| Tiếp điểm phụ | 220 | 320 | ||||||
| Giải phóng shunt | 210 | 310 | ||||||
| Tiếp điểm báo động | 208 | 308 | ||||||
| Không có phụ kiện | 200 | 300 | ||||||
| 1. Giá trị định mức của cầu dao điện | ||||||||
| Người mẫu | Imax (A) | Thông số kỹ thuật (A) | Điện áp hoạt động định mức (V) | Điện áp cách điện định mức (V) | ICU (kA) | Ics (kA) | Số cực (P) | Khoảng cách hồ quang (mm) |
| CJMM1-63S | 63 | 6,10,16,20 25,32,40, 50,63 | 400 | 500 | 10* | 5* | 3 | ≤50 |
| CJMM1-63H | 63 | 400 | 500 | 15* | 10* | 3,4 | ||
| CJMM1-100S | 100 | 16, 20, 25, 32 40,50,63, 80,100 | 690 | 800 | 35/10 | 22/5 | 3 | ≤50 |
| CJMM1-100H | 100 | 400 | 800 | 50 | 35 | 2,3,4 | ||
| CJMM1-225S | 225 | 100,125, 160,180, 200.225 | 690 | 800 | 35/10 | 25/5 | 3 | ≤50 |
| CJMM1-225H | 225 | 400 | 800 | 50 | 35 | 2,3,4 | ||
| CJMM1-400S | 400 | 225.250 315.350 400 | 690 | 800 | 50/15 | 35/8 | 3,4 | ≤100 |
| CJMM1-400H | 400 | 400 | 800 | 65 | 35 | 3 | ||
| CJMM1-630S | 630 | 400, 500, 630 | 690 | 800 | 50/15 | 35/8 | 3,4 | ≤100 |
| CJMM1-630H | 630 | 400 | 800 | 65 | 45 | 3 | ||
| Lưu ý: Khi các thông số thử nghiệm ở mức 400V, 6A mà không có chức năng gia nhiệt, hãy đảm bảo không xảy ra hiện tượng nhả nhiệt. | ||||||||
| 2. Đặc tính hoạt động ngắt mạch theo thời gian nghịch đảo khi mỗi cực của bộ ngắt quá dòng cho hệ thống phân phối điện được cấp điện cùng một lúc. | ||||||||
| Mục kiểm tra Dòng điện (I/In) | Khu vực thời gian thử nghiệm | Trạng thái ban đầu | ||||||
| Dòng điện không gây ngắt mạch 1,05In | 2h(n>63A),1h(n<63A) | Trạng thái lạnh | ||||||
| Dòng điện ngắt 1.3In | 2h(n>63A),1h(n<63A) | Tiến hành ngay lập tức sau bài kiểm tra số 1 | ||||||
| 3. Đặc tính hoạt động ngắt thời gian nghịch đảo khi mỗi cực của quá tải- Mạch bảo vệ động cơ hiện tại được bật cùng lúc. | ||||||||
| Thiết lập thời gian quy ước hiện tại Trạng thái ban đầu | Ghi chú | |||||||
| 1.0In | >2 giờ | Trạng thái lạnh | ||||||
| 1.2In | ≤2 giờ | Tiến hành ngay sau bài kiểm tra số 1. | ||||||
| 1,5 inch | ≤4 phút | Trạng thái lạnh | 10≤In≤225 | |||||
| ≤8 phút | Trạng thái lạnh | 225≤In≤630 | ||||||
| 7.2In | 4s≤T≤10s | Trạng thái lạnh | 10≤In≤225 | |||||
| 6s≤T≤20s | Trạng thái lạnh | 225≤In≤630 | ||||||
| 4. Đặc tính hoạt động tức thời của máy cắt mạch phân phối điện phải được đặt là 10in+20%, và đặc tính của máy cắt mạch bảo vệ động cơ phải được đặt là 12ln±20%. |
Cầu dao tự động vỏ đúc (MCCB) là thiết bị bảo vệ điện được thiết kế để bảo vệ mạch điện khỏi dòng điện quá mức. Dòng điện quá mức này có thể do quá tải hoặc ngắn mạch gây ra. Cầu dao tự động vỏ đúc có thể được sử dụng trong phạm vi điện áp và tần số rộng với giới hạn dưới và trên được xác định rõ ràng của các cài đặt ngắt có thể điều chỉnh. Ngoài cơ chế ngắt, MCCB cũng có thể được sử dụng như công tắc ngắt thủ công trong trường hợp khẩn cấp hoặc hoạt động bảo trì. MCCB được tiêu chuẩn hóa và kiểm tra về bảo vệ quá dòng, đột biến điện áp và lỗi để đảm bảo hoạt động an toàn trong mọi môi trường và ứng dụng. Chúng hoạt động hiệu quả như một công tắc đặt lại cho mạch điện để ngắt nguồn và giảm thiểu thiệt hại do quá tải mạch, lỗi nối đất, ngắn mạch hoặc khi dòng điện vượt quá giới hạn dòng điện.
MCCB hay cầu chì là một linh kiện điện thường được sử dụng trong công nghiệp để bảo vệ thiết bị và hệ thống điện tử. Trong cuộc sống hàng ngày, MCCB được sử dụng rộng rãi. Một số ứng dụng phổ biến của MCCB được mô tả dưới đây.
1. Phân phối năng lượng: MCCB giúp người lắp đặt phân phối tải lưới điện đến các thiết bị điện khác nhau. Thông qua MCCB, người dùng có thể kiểm soát việc phân phối điện năng và dòng điện của từng thiết bị một cách an toàn hơn.
2. Bảo vệ ngắn mạch: Chức năng chính của MCCB là tự động ngắt mạch khi xảy ra ngắn mạch. Điều này giúp tránh hư hỏng thiết bị, phát tán các chất nguy hiểm như hỏa hoạn.
3. Bảo vệ quá tải: Tương tự như bảo vệ ngắn mạch, MCCB cũng có thể bảo vệ thiết bị khỏi bị quá tải. Điều này có thể đạt được bằng cách thiết lập các cầu dao để tránh hư hỏng điện do quá tải thiết bị gây ra.
4. Bảo vệ máy phát điện: MCCB được sử dụng rộng rãi trong việc phát hiện và bảo vệ các máy phát điện lớn. Nó có thể giám sát hoạt động bình thường của máy phát điện, phát hiện sự cố và kích hoạt hệ thống bảo vệ bằng cầu dao.
5. Bảo vệ máy biến áp: MCCB có thể ngăn ngừa quá tải máy biến áp và đồng thời giám sát tình trạng quá nhiệt của máy biến áp.
6. Bảo vệ xi lanh di động: MCCB được sử dụng rộng rãi trong các máy nghiền bê tông, xi măng và khoáng sản. Nó phát hiện các sự cố ngắn mạch và quá tải của thiết bị, từ đó bảo vệ thiết bị khỏi hư hỏng.
Tóm lại, MCCB được sử dụng rộng rãi và đóng vai trò quan trọng trong nhiều lĩnh vực điện và cơ khí. Khi lựa chọn MCCB, cần xem xét cẩn thận nhiều yếu tố cụ thể để đảm bảo an toàn và độ tin cậy của hệ thống, bao gồm khả năng chịu tải dòng điện, hiệu suất, diện tích sử dụng và các thông số quan trọng khác.